What is the integral of $logleft(x^{2} + k^{2}right)$ ?.












-2












$begingroup$


Where $displaystyle k$ is a real number ?. I have tried everything but I stuck when I have to find integral of
$k^{2}/left(x^{2} + k^{2}right)$.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You may try $x^2 + k^2 = (x - jk) (x + jk)$ ...
    $endgroup$
    – Damien
    Dec 10 '18 at 16:17






  • 1




    $begingroup$
    try the substitution $x = ktan theta$
    $endgroup$
    – Doug M
    Dec 10 '18 at 18:10
















-2












$begingroup$


Where $displaystyle k$ is a real number ?. I have tried everything but I stuck when I have to find integral of
$k^{2}/left(x^{2} + k^{2}right)$.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You may try $x^2 + k^2 = (x - jk) (x + jk)$ ...
    $endgroup$
    – Damien
    Dec 10 '18 at 16:17






  • 1




    $begingroup$
    try the substitution $x = ktan theta$
    $endgroup$
    – Doug M
    Dec 10 '18 at 18:10














-2












-2








-2





$begingroup$


Where $displaystyle k$ is a real number ?. I have tried everything but I stuck when I have to find integral of
$k^{2}/left(x^{2} + k^{2}right)$.










share|cite|improve this question











$endgroup$




Where $displaystyle k$ is a real number ?. I have tried everything but I stuck when I have to find integral of
$k^{2}/left(x^{2} + k^{2}right)$.







real-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 10 '18 at 19:26









Felix Marin

68.1k7108142




68.1k7108142










asked Dec 10 '18 at 15:49









Panagiotis PanagiotouPanagiotis Panagiotou

1




1








  • 2




    $begingroup$
    You may try $x^2 + k^2 = (x - jk) (x + jk)$ ...
    $endgroup$
    – Damien
    Dec 10 '18 at 16:17






  • 1




    $begingroup$
    try the substitution $x = ktan theta$
    $endgroup$
    – Doug M
    Dec 10 '18 at 18:10














  • 2




    $begingroup$
    You may try $x^2 + k^2 = (x - jk) (x + jk)$ ...
    $endgroup$
    – Damien
    Dec 10 '18 at 16:17






  • 1




    $begingroup$
    try the substitution $x = ktan theta$
    $endgroup$
    – Doug M
    Dec 10 '18 at 18:10








2




2




$begingroup$
You may try $x^2 + k^2 = (x - jk) (x + jk)$ ...
$endgroup$
– Damien
Dec 10 '18 at 16:17




$begingroup$
You may try $x^2 + k^2 = (x - jk) (x + jk)$ ...
$endgroup$
– Damien
Dec 10 '18 at 16:17




1




1




$begingroup$
try the substitution $x = ktan theta$
$endgroup$
– Doug M
Dec 10 '18 at 18:10




$begingroup$
try the substitution $x = ktan theta$
$endgroup$
– Doug M
Dec 10 '18 at 18:10










1 Answer
1






active

oldest

votes


















2












$begingroup$

Integrate by parts. $u=ln(x^2+k^2)$ and $dv=dx$ to change to the integral



$$int frac{2x^2}{x^2+k^2} ; dx$$



which is do-able by ordinary methods.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034081%2fwhat-is-the-integral-of-log-leftx2-k2-right%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Integrate by parts. $u=ln(x^2+k^2)$ and $dv=dx$ to change to the integral



    $$int frac{2x^2}{x^2+k^2} ; dx$$



    which is do-able by ordinary methods.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Integrate by parts. $u=ln(x^2+k^2)$ and $dv=dx$ to change to the integral



      $$int frac{2x^2}{x^2+k^2} ; dx$$



      which is do-able by ordinary methods.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Integrate by parts. $u=ln(x^2+k^2)$ and $dv=dx$ to change to the integral



        $$int frac{2x^2}{x^2+k^2} ; dx$$



        which is do-able by ordinary methods.






        share|cite|improve this answer









        $endgroup$



        Integrate by parts. $u=ln(x^2+k^2)$ and $dv=dx$ to change to the integral



        $$int frac{2x^2}{x^2+k^2} ; dx$$



        which is do-able by ordinary methods.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 10 '18 at 19:35









        B. GoddardB. Goddard

        19k21440




        19k21440






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034081%2fwhat-is-the-integral-of-log-leftx2-k2-right%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bundesstraße 106

            Verónica Boquete

            Ida-Boy-Ed-Garten