Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1,...












1












$begingroup$


Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.



By definition of the task, I found that $A=M_B(p)$, which is the matrix of
$p$ with respect to the basis $B$.



begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}



(i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
is a basis for $V$ .



I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.



If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.



Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.



Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.



(ii) Also, I am asked to compute $M = M_{B'}(p)$.
I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.



How should I better approach this?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.



    By definition of the task, I found that $A=M_B(p)$, which is the matrix of
    $p$ with respect to the basis $B$.



    begin{bmatrix}
    frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
    -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
    -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
    end{bmatrix}



    (i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
    is a basis for $V$ .



    I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.



    If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.



    Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.



    Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.



    (ii) Also, I am asked to compute $M = M_{B'}(p)$.
    I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.



    How should I better approach this?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.



      By definition of the task, I found that $A=M_B(p)$, which is the matrix of
      $p$ with respect to the basis $B$.



      begin{bmatrix}
      frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
      -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
      -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
      end{bmatrix}



      (i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
      is a basis for $V$ .



      I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.



      If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.



      Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.



      Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.



      (ii) Also, I am asked to compute $M = M_{B'}(p)$.
      I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.



      How should I better approach this?










      share|cite|improve this question











      $endgroup$




      Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.



      By definition of the task, I found that $A=M_B(p)$, which is the matrix of
      $p$ with respect to the basis $B$.



      begin{bmatrix}
      frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
      -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
      -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
      end{bmatrix}



      (i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
      is a basis for $V$ .



      I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.



      If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.



      Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.



      Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.



      (ii) Also, I am asked to compute $M = M_{B'}(p)$.
      I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.



      How should I better approach this?







      linear-algebra matrices linear-transformations change-of-basis projection-matrices






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 15 '18 at 12:24









      Batominovski

      33.1k33293




      33.1k33293










      asked Dec 14 '18 at 10:35









      nasdaqnasdaq

      62




      62






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          1) I think you got the general idea but you should write it out more clearly.



          Notice that $A^2 = A$



          Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$



          Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.



          Let $v in ker p in Im ; p$ then



          $$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$



          Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$



          Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$



          So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.



          Therefore
          $$ B = {v_1,v_2,v_3}$$
          is a basis of $V$.



          2) Let
          $$A =
          begin{bmatrix}
          frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
          -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
          -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
          end{bmatrix}
          $$



          Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.



          Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:



          begin{align*}
          p(v) &= p (sum_i lambda_i v_i) \
          &= sum_i lambda_ip(v_i) \
          &=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
          &= lambda_1 v_1 + lambda_2 v_2 + 0.
          end{align*}



          The matrix in the basis $B'$ is



          $$M =
          begin{bmatrix}
          1 & 0 & 0 \
          0& 1 & 0 \
          0& 0 & 0\
          end{bmatrix}.
          $$



          You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039202%2flet-v-1-v-2-be-a-basis-for-textimp-and-v-3-be-a-basis-for-ker%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            1) I think you got the general idea but you should write it out more clearly.



            Notice that $A^2 = A$



            Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$



            Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.



            Let $v in ker p in Im ; p$ then



            $$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$



            Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$



            Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$



            So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.



            Therefore
            $$ B = {v_1,v_2,v_3}$$
            is a basis of $V$.



            2) Let
            $$A =
            begin{bmatrix}
            frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
            -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
            -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
            end{bmatrix}
            $$



            Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.



            Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:



            begin{align*}
            p(v) &= p (sum_i lambda_i v_i) \
            &= sum_i lambda_ip(v_i) \
            &=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
            &= lambda_1 v_1 + lambda_2 v_2 + 0.
            end{align*}



            The matrix in the basis $B'$ is



            $$M =
            begin{bmatrix}
            1 & 0 & 0 \
            0& 1 & 0 \
            0& 0 & 0\
            end{bmatrix}.
            $$



            You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              1) I think you got the general idea but you should write it out more clearly.



              Notice that $A^2 = A$



              Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$



              Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.



              Let $v in ker p in Im ; p$ then



              $$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$



              Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$



              Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$



              So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.



              Therefore
              $$ B = {v_1,v_2,v_3}$$
              is a basis of $V$.



              2) Let
              $$A =
              begin{bmatrix}
              frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
              -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
              -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
              end{bmatrix}
              $$



              Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.



              Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:



              begin{align*}
              p(v) &= p (sum_i lambda_i v_i) \
              &= sum_i lambda_ip(v_i) \
              &=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
              &= lambda_1 v_1 + lambda_2 v_2 + 0.
              end{align*}



              The matrix in the basis $B'$ is



              $$M =
              begin{bmatrix}
              1 & 0 & 0 \
              0& 1 & 0 \
              0& 0 & 0\
              end{bmatrix}.
              $$



              You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                1) I think you got the general idea but you should write it out more clearly.



                Notice that $A^2 = A$



                Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$



                Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.



                Let $v in ker p in Im ; p$ then



                $$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$



                Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$



                Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$



                So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.



                Therefore
                $$ B = {v_1,v_2,v_3}$$
                is a basis of $V$.



                2) Let
                $$A =
                begin{bmatrix}
                frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
                -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
                -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
                end{bmatrix}
                $$



                Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.



                Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:



                begin{align*}
                p(v) &= p (sum_i lambda_i v_i) \
                &= sum_i lambda_ip(v_i) \
                &=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
                &= lambda_1 v_1 + lambda_2 v_2 + 0.
                end{align*}



                The matrix in the basis $B'$ is



                $$M =
                begin{bmatrix}
                1 & 0 & 0 \
                0& 1 & 0 \
                0& 0 & 0\
                end{bmatrix}.
                $$



                You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.






                share|cite|improve this answer











                $endgroup$



                1) I think you got the general idea but you should write it out more clearly.



                Notice that $A^2 = A$



                Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$



                Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.



                Let $v in ker p in Im ; p$ then



                $$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$



                Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$



                Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$



                So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.



                Therefore
                $$ B = {v_1,v_2,v_3}$$
                is a basis of $V$.



                2) Let
                $$A =
                begin{bmatrix}
                frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
                -frac{1}{3} & frac{2}{3} & -frac{1}{3} \
                -frac{1}{3} & -frac{1}{3} &frac{2}{3} \
                end{bmatrix}
                $$



                Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.



                Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:



                begin{align*}
                p(v) &= p (sum_i lambda_i v_i) \
                &= sum_i lambda_ip(v_i) \
                &=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
                &= lambda_1 v_1 + lambda_2 v_2 + 0.
                end{align*}



                The matrix in the basis $B'$ is



                $$M =
                begin{bmatrix}
                1 & 0 & 0 \
                0& 1 & 0 \
                0& 0 & 0\
                end{bmatrix}.
                $$



                You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 14 '18 at 17:35

























                answered Dec 14 '18 at 17:19









                DigitalisDigitalis

                530216




                530216






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039202%2flet-v-1-v-2-be-a-basis-for-textimp-and-v-3-be-a-basis-for-ker%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bundesstraße 106

                    Verónica Boquete

                    Ida-Boy-Ed-Garten