Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1,...
$begingroup$
Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A=M_B(p)$, which is the matrix of
$p$ with respect to the basis $B$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
(i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
is a basis for $V$ .
I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.
If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.
Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.
Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.
(ii) Also, I am asked to compute $M = M_{B'}(p)$.
I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.
How should I better approach this?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
$endgroup$
add a comment |
$begingroup$
Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A=M_B(p)$, which is the matrix of
$p$ with respect to the basis $B$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
(i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
is a basis for $V$ .
I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.
If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.
Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.
Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.
(ii) Also, I am asked to compute $M = M_{B'}(p)$.
I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.
How should I better approach this?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
$endgroup$
add a comment |
$begingroup$
Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A=M_B(p)$, which is the matrix of
$p$ with respect to the basis $B$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
(i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
is a basis for $V$ .
I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.
If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.
Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.
Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.
(ii) Also, I am asked to compute $M = M_{B'}(p)$.
I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.
How should I better approach this?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
$endgroup$
Let $B = (1, X, X^2)$ be a basis for $mathbb{R}_2[X]$ and $p ∈ mathcal{L}big(mathbb{R}_2[X]big)$ be the linear map defined by $p(1) = frac{1}{3}(2 − X − X^2)$, $p(X) = frac{1}{3}(−1 + 2X − X^2)$ and $p(X^2) = frac{1}{3} (−1 − X + 2X^2)$.
By definition of the task, I found that $A=M_B(p)$, which is the matrix of
$p$ with respect to the basis $B$.
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
(i) Let $(v_1, v_2)$ be a basis for $text{Im}(p)$ and $(v_3)$ be a basis for $ker(p)$. Prove that $B' = (v_1, v_2, v_3)$
is a basis for $V$ .
I proved that for all $v$ ∈ V we have $v =big(v-p(v)big)+p(v)$.
If $yinker(p) ∩ text{Im}(p)$, then $y = p(v)$ for some $v ∈ V$.
Then, $y = p(y) = p^2(v) = 0$. That is, $(p ◦ p)(y) = p(p(y)) = p(v) = 0$ Hence, $ker(p) ∩ text{Im}(p)= {0}$.
Also, $ker(p) + text{Im}(p) ∈ V$, since each is a subspace of $V$ and their sum is a subspace as well.
(ii) Also, I am asked to compute $M = M_{B'}(p)$.
I know that $A^2 = A$, so $p(v) = pbig(p(w)big) = (p ◦ p)(w) = p (w) = v$, but I struggling to continue further.
How should I better approach this?
linear-algebra matrices linear-transformations change-of-basis projection-matrices
linear-algebra matrices linear-transformations change-of-basis projection-matrices
edited Dec 15 '18 at 12:24
Batominovski
33.1k33293
33.1k33293
asked Dec 14 '18 at 10:35
nasdaqnasdaq
62
62
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
1) I think you got the general idea but you should write it out more clearly.
Notice that $A^2 = A$
Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$
Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.
Let $v in ker p in Im ; p$ then
$$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$
Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$
Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$
So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.
Therefore
$$ B = {v_1,v_2,v_3}$$
is a basis of $V$.
2) Let
$$A =
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
$$
Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.
Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:
begin{align*}
p(v) &= p (sum_i lambda_i v_i) \
&= sum_i lambda_ip(v_i) \
&=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
&= lambda_1 v_1 + lambda_2 v_2 + 0.
end{align*}
The matrix in the basis $B'$ is
$$M =
begin{bmatrix}
1 & 0 & 0 \
0& 1 & 0 \
0& 0 & 0\
end{bmatrix}.
$$
You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039202%2flet-v-1-v-2-be-a-basis-for-textimp-and-v-3-be-a-basis-for-ker%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
1) I think you got the general idea but you should write it out more clearly.
Notice that $A^2 = A$
Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$
Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.
Let $v in ker p in Im ; p$ then
$$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$
Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$
Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$
So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.
Therefore
$$ B = {v_1,v_2,v_3}$$
is a basis of $V$.
2) Let
$$A =
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
$$
Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.
Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:
begin{align*}
p(v) &= p (sum_i lambda_i v_i) \
&= sum_i lambda_ip(v_i) \
&=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
&= lambda_1 v_1 + lambda_2 v_2 + 0.
end{align*}
The matrix in the basis $B'$ is
$$M =
begin{bmatrix}
1 & 0 & 0 \
0& 1 & 0 \
0& 0 & 0\
end{bmatrix}.
$$
You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.
$endgroup$
add a comment |
$begingroup$
1) I think you got the general idea but you should write it out more clearly.
Notice that $A^2 = A$
Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$
Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.
Let $v in ker p in Im ; p$ then
$$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$
Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$
Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$
So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.
Therefore
$$ B = {v_1,v_2,v_3}$$
is a basis of $V$.
2) Let
$$A =
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
$$
Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.
Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:
begin{align*}
p(v) &= p (sum_i lambda_i v_i) \
&= sum_i lambda_ip(v_i) \
&=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
&= lambda_1 v_1 + lambda_2 v_2 + 0.
end{align*}
The matrix in the basis $B'$ is
$$M =
begin{bmatrix}
1 & 0 & 0 \
0& 1 & 0 \
0& 0 & 0\
end{bmatrix}.
$$
You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.
$endgroup$
add a comment |
$begingroup$
1) I think you got the general idea but you should write it out more clearly.
Notice that $A^2 = A$
Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$
Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.
Let $v in ker p in Im ; p$ then
$$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$
Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$
Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$
So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.
Therefore
$$ B = {v_1,v_2,v_3}$$
is a basis of $V$.
2) Let
$$A =
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
$$
Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.
Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:
begin{align*}
p(v) &= p (sum_i lambda_i v_i) \
&= sum_i lambda_ip(v_i) \
&=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
&= lambda_1 v_1 + lambda_2 v_2 + 0.
end{align*}
The matrix in the basis $B'$ is
$$M =
begin{bmatrix}
1 & 0 & 0 \
0& 1 & 0 \
0& 0 & 0\
end{bmatrix}.
$$
You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.
$endgroup$
1) I think you got the general idea but you should write it out more clearly.
Notice that $A^2 = A$
Let $vin Im ; p$ then $exists w in V : v = Aw.$ And $$Av = A^2w = A w = v.$$
Therefore the restriction of $p$ to the subspace $Im ; p$ is the identity.
Let $v in ker p in Im ; p$ then
$$v = underbrace{v - p(v)}_{in ker;p} + underbrace{p(v)}_{in Im ;p}.$$
Now show that $ Im ; p cap ker p = {0}$. Let $y in Im ; p cap ker p Rightarrow exists v in V: y = p(v).$
Since $y in Im ; p : p(y) = y$ but $y in ker p$ so we also have $p(y) = 0.$
So $ Im ; p cap ker p = {0}$ and we have $V = Im ; p oplus ker p$.
Therefore
$$ B = {v_1,v_2,v_3}$$
is a basis of $V$.
2) Let
$$A =
begin{bmatrix}
frac{2}{3} & -frac{1}{3} & -frac{1}{3} \
-frac{1}{3} & frac{2}{3} & -frac{1}{3} \
-frac{1}{3} & -frac{1}{3} &frac{2}{3} \
end{bmatrix}
$$
Since $B' = {v_1,v_2,v_3 }$ is a basis of $V$ we have $ forall v in V , exists lambda_1,lambda_2,lambda_3 : v = sum_i lambda_i v_i$.
Finally since $v_1,v_2 in Im ; p$ and $v_3 in ker p$ and $p$ is linear:
begin{align*}
p(v) &= p (sum_i lambda_i v_i) \
&= sum_i lambda_ip(v_i) \
&=lambda_1 v_1 + lambda_2 v_2 + lambda_3p(v_3) \
&= lambda_1 v_1 + lambda_2 v_2 + 0.
end{align*}
The matrix in the basis $B'$ is
$$M =
begin{bmatrix}
1 & 0 & 0 \
0& 1 & 0 \
0& 0 & 0\
end{bmatrix}.
$$
You can see $p$ as a projection of $R_2[X]$ onto the subspace $ Im ; p$.
edited Dec 14 '18 at 17:35
answered Dec 14 '18 at 17:19
DigitalisDigitalis
530216
530216
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039202%2flet-v-1-v-2-be-a-basis-for-textimp-and-v-3-be-a-basis-for-ker%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown