Solve Ax=b, where A consist of $x^k$, is my method using RREF on augmented matrix valid?
$begingroup$
I have Ax=b,
$$
begin{bmatrix}
1 & x & x^2 \
x & 1 & x \
x^2 & x & 1
end{bmatrix}
begin{bmatrix}
a \ b \ c
end{bmatrix} =
begin{bmatrix}
x \ x^2 \ x^3
end{bmatrix}
$$
and I transform it into an augmented matrix:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x & 1 & x & x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
I tried to do RREF by considering x and function of x as part of constants, for example, $R_2-R_1x$:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x-x & 1-x^2 & x-x^3 & x^2-x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}=
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
And finally arrive at,
begin{bmatrix}begin{array}{ccc|c}
1 & 0 & 0 & x \
0 & 1 & 0 & 0\
0 & 0 & 1 & 0
end{array}end{bmatrix}
$$ a = x, b = 0, c = 0$$
Are the operations to reduce the matrix by multiplying by x and function of x valid?
linear-algebra matrices systems-of-equations
$endgroup$
add a comment |
$begingroup$
I have Ax=b,
$$
begin{bmatrix}
1 & x & x^2 \
x & 1 & x \
x^2 & x & 1
end{bmatrix}
begin{bmatrix}
a \ b \ c
end{bmatrix} =
begin{bmatrix}
x \ x^2 \ x^3
end{bmatrix}
$$
and I transform it into an augmented matrix:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x & 1 & x & x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
I tried to do RREF by considering x and function of x as part of constants, for example, $R_2-R_1x$:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x-x & 1-x^2 & x-x^3 & x^2-x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}=
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
And finally arrive at,
begin{bmatrix}begin{array}{ccc|c}
1 & 0 & 0 & x \
0 & 1 & 0 & 0\
0 & 0 & 1 & 0
end{array}end{bmatrix}
$$ a = x, b = 0, c = 0$$
Are the operations to reduce the matrix by multiplying by x and function of x valid?
linear-algebra matrices systems-of-equations
$endgroup$
$begingroup$
Is $x$ a constant or variable?
$endgroup$
– Shubham Johri
Dec 10 '18 at 9:25
add a comment |
$begingroup$
I have Ax=b,
$$
begin{bmatrix}
1 & x & x^2 \
x & 1 & x \
x^2 & x & 1
end{bmatrix}
begin{bmatrix}
a \ b \ c
end{bmatrix} =
begin{bmatrix}
x \ x^2 \ x^3
end{bmatrix}
$$
and I transform it into an augmented matrix:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x & 1 & x & x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
I tried to do RREF by considering x and function of x as part of constants, for example, $R_2-R_1x$:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x-x & 1-x^2 & x-x^3 & x^2-x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}=
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
And finally arrive at,
begin{bmatrix}begin{array}{ccc|c}
1 & 0 & 0 & x \
0 & 1 & 0 & 0\
0 & 0 & 1 & 0
end{array}end{bmatrix}
$$ a = x, b = 0, c = 0$$
Are the operations to reduce the matrix by multiplying by x and function of x valid?
linear-algebra matrices systems-of-equations
$endgroup$
I have Ax=b,
$$
begin{bmatrix}
1 & x & x^2 \
x & 1 & x \
x^2 & x & 1
end{bmatrix}
begin{bmatrix}
a \ b \ c
end{bmatrix} =
begin{bmatrix}
x \ x^2 \ x^3
end{bmatrix}
$$
and I transform it into an augmented matrix:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x & 1 & x & x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
I tried to do RREF by considering x and function of x as part of constants, for example, $R_2-R_1x$:
$$
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
x-x & 1-x^2 & x-x^3 & x^2-x^2\
x^2 & x & 1 & x^3
end{array}end{bmatrix}=
begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}
$$
And finally arrive at,
begin{bmatrix}begin{array}{ccc|c}
1 & 0 & 0 & x \
0 & 1 & 0 & 0\
0 & 0 & 1 & 0
end{array}end{bmatrix}
$$ a = x, b = 0, c = 0$$
Are the operations to reduce the matrix by multiplying by x and function of x valid?
linear-algebra matrices systems-of-equations
linear-algebra matrices systems-of-equations
edited Dec 10 '18 at 8:58
José Carlos Santos
161k22128232
161k22128232
asked Dec 10 '18 at 8:25
drerDdrerD
1609
1609
$begingroup$
Is $x$ a constant or variable?
$endgroup$
– Shubham Johri
Dec 10 '18 at 9:25
add a comment |
$begingroup$
Is $x$ a constant or variable?
$endgroup$
– Shubham Johri
Dec 10 '18 at 9:25
$begingroup$
Is $x$ a constant or variable?
$endgroup$
– Shubham Johri
Dec 10 '18 at 9:25
$begingroup$
Is $x$ a constant or variable?
$endgroup$
– Shubham Johri
Dec 10 '18 at 9:25
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}xrightarrow{R_3to R_3-x^2R_1}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & x(1-x^2) & 1-x^4 & 0
end{array}end{bmatrix}\xrightarrow{R_3to R_3-xR_2}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}xrightarrow[R_1to R_1+R_3]{R_2to R_2+xR_3}begin{bmatrix}begin{array}{ccc|c}
1 & x & 1 & x \
0 & 1-x^2 & 0 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}$
If $x$ is a constant and $1-x^2=0, b,cinBbb R, a=x(1-b)-c=pm(1-b)-c$.
If $x$ is a constant but $1-x^2ne0, b=c=0,a=xnepm1$.
If $x$ is a variable, then in general, $b=c=0, a=x.$
$endgroup$
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
add a comment |
$begingroup$
We only can divide a row by $x$ if $xneq0$. Therefore, the case in which $x=0$ should be treated as a special case. More generaly, you can only divide a row by $f(x)$ if $f(x)neq0$.
$endgroup$
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033628%2fsolve-ax-b-where-a-consist-of-xk-is-my-method-using-rref-on-augmented-matri%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}xrightarrow{R_3to R_3-x^2R_1}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & x(1-x^2) & 1-x^4 & 0
end{array}end{bmatrix}\xrightarrow{R_3to R_3-xR_2}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}xrightarrow[R_1to R_1+R_3]{R_2to R_2+xR_3}begin{bmatrix}begin{array}{ccc|c}
1 & x & 1 & x \
0 & 1-x^2 & 0 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}$
If $x$ is a constant and $1-x^2=0, b,cinBbb R, a=x(1-b)-c=pm(1-b)-c$.
If $x$ is a constant but $1-x^2ne0, b=c=0,a=xnepm1$.
If $x$ is a variable, then in general, $b=c=0, a=x.$
$endgroup$
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
add a comment |
$begingroup$
$begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}xrightarrow{R_3to R_3-x^2R_1}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & x(1-x^2) & 1-x^4 & 0
end{array}end{bmatrix}\xrightarrow{R_3to R_3-xR_2}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}xrightarrow[R_1to R_1+R_3]{R_2to R_2+xR_3}begin{bmatrix}begin{array}{ccc|c}
1 & x & 1 & x \
0 & 1-x^2 & 0 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}$
If $x$ is a constant and $1-x^2=0, b,cinBbb R, a=x(1-b)-c=pm(1-b)-c$.
If $x$ is a constant but $1-x^2ne0, b=c=0,a=xnepm1$.
If $x$ is a variable, then in general, $b=c=0, a=x.$
$endgroup$
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
add a comment |
$begingroup$
$begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}xrightarrow{R_3to R_3-x^2R_1}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & x(1-x^2) & 1-x^4 & 0
end{array}end{bmatrix}\xrightarrow{R_3to R_3-xR_2}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}xrightarrow[R_1to R_1+R_3]{R_2to R_2+xR_3}begin{bmatrix}begin{array}{ccc|c}
1 & x & 1 & x \
0 & 1-x^2 & 0 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}$
If $x$ is a constant and $1-x^2=0, b,cinBbb R, a=x(1-b)-c=pm(1-b)-c$.
If $x$ is a constant but $1-x^2ne0, b=c=0,a=xnepm1$.
If $x$ is a variable, then in general, $b=c=0, a=x.$
$endgroup$
$begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
x^2 & x & 1 & x^3
end{array}end{bmatrix}xrightarrow{R_3to R_3-x^2R_1}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & x(1-x^2) & 1-x^4 & 0
end{array}end{bmatrix}\xrightarrow{R_3to R_3-xR_2}begin{bmatrix}begin{array}{ccc|c}
1 & x & x^2 & x \
0 & 1-x^2 & x-x^3 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}xrightarrow[R_1to R_1+R_3]{R_2to R_2+xR_3}begin{bmatrix}begin{array}{ccc|c}
1 & x & 1 & x \
0 & 1-x^2 & 0 & 0\
0 & 0 & 1-x^2 & 0
end{array}end{bmatrix}$
If $x$ is a constant and $1-x^2=0, b,cinBbb R, a=x(1-b)-c=pm(1-b)-c$.
If $x$ is a constant but $1-x^2ne0, b=c=0,a=xnepm1$.
If $x$ is a variable, then in general, $b=c=0, a=x.$
answered Dec 10 '18 at 9:35
Shubham JohriShubham Johri
5,192717
5,192717
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
add a comment |
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
it makes sense if it's constant, but if it's variable does it make sense to do RREF still?
$endgroup$
– drerD
Dec 11 '18 at 1:31
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
$begingroup$
Yes, you can still do Gaussian Elimination, but if $x$ is a variable and $a,b,c$ are constants, you don't have a solution to the system as shown above.
$endgroup$
– Shubham Johri
Dec 11 '18 at 6:34
add a comment |
$begingroup$
We only can divide a row by $x$ if $xneq0$. Therefore, the case in which $x=0$ should be treated as a special case. More generaly, you can only divide a row by $f(x)$ if $f(x)neq0$.
$endgroup$
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
add a comment |
$begingroup$
We only can divide a row by $x$ if $xneq0$. Therefore, the case in which $x=0$ should be treated as a special case. More generaly, you can only divide a row by $f(x)$ if $f(x)neq0$.
$endgroup$
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
add a comment |
$begingroup$
We only can divide a row by $x$ if $xneq0$. Therefore, the case in which $x=0$ should be treated as a special case. More generaly, you can only divide a row by $f(x)$ if $f(x)neq0$.
$endgroup$
We only can divide a row by $x$ if $xneq0$. Therefore, the case in which $x=0$ should be treated as a special case. More generaly, you can only divide a row by $f(x)$ if $f(x)neq0$.
answered Dec 10 '18 at 8:29
José Carlos SantosJosé Carlos Santos
161k22128232
161k22128232
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
add a comment |
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
$begingroup$
interesting, the x is actually representing $e^{-t_0}, t_0geq 0$. So it seems to work in general. But there's a case where I had to divide a row by $1-x^2 = 1-e^{-2t_0}$ which is zero if $t_0 = 0 $.
$endgroup$
– drerD
Dec 10 '18 at 8:39
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033628%2fsolve-ax-b-where-a-consist-of-xk-is-my-method-using-rref-on-augmented-matri%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Is $x$ a constant or variable?
$endgroup$
– Shubham Johri
Dec 10 '18 at 9:25