Tricky integral relationship












1












$begingroup$


I am trying to prove that
$$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$



With the following sympy code i verified it symbolically for a few cases.



from sympy import *

x,u,v=symbols('x,u,v')
print
f=lambda x:exp(x);
print expand(integrate(integrate((u-0)*f(u),
(u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))









share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I am trying to prove that
    $$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$



    With the following sympy code i verified it symbolically for a few cases.



    from sympy import *

    x,u,v=symbols('x,u,v')
    print
    f=lambda x:exp(x);
    print expand(integrate(integrate((u-0)*f(u),
    (u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
    print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))









    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I am trying to prove that
      $$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$



      With the following sympy code i verified it symbolically for a few cases.



      from sympy import *

      x,u,v=symbols('x,u,v')
      print
      f=lambda x:exp(x);
      print expand(integrate(integrate((u-0)*f(u),
      (u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
      print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))









      share|cite|improve this question









      $endgroup$




      I am trying to prove that
      $$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$



      With the following sympy code i verified it symbolically for a few cases.



      from sympy import *

      x,u,v=symbols('x,u,v')
      print
      f=lambda x:exp(x);
      print expand(integrate(integrate((u-0)*f(u),
      (u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
      print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))






      definite-integrals integral-transforms






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 10 '18 at 8:00









      Peter SheldrickPeter Sheldrick

      6911339




      6911339






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Call $F$ the antiderivative of $f$ such that
          $F(1)=0$.



          Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.



          Now show that both expressions give the same result, i.e., :



          $${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$



          Method : Write your LHS integral under the form :



          $$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$



          Then integrate inside the large parentheses by parts in the first expression, giving



          $$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$



          Taking into account $F(1)=0$ and ${frak F}(1)=0$ :



          $$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$



          I let you find the rest...






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
            $endgroup$
            – Peter Sheldrick
            Dec 10 '18 at 10:10










          • $begingroup$
            You are right. Corrected.
            $endgroup$
            – Jean Marie
            Dec 10 '18 at 10:12











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033608%2ftricky-integral-relationship%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Call $F$ the antiderivative of $f$ such that
          $F(1)=0$.



          Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.



          Now show that both expressions give the same result, i.e., :



          $${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$



          Method : Write your LHS integral under the form :



          $$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$



          Then integrate inside the large parentheses by parts in the first expression, giving



          $$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$



          Taking into account $F(1)=0$ and ${frak F}(1)=0$ :



          $$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$



          I let you find the rest...






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
            $endgroup$
            – Peter Sheldrick
            Dec 10 '18 at 10:10










          • $begingroup$
            You are right. Corrected.
            $endgroup$
            – Jean Marie
            Dec 10 '18 at 10:12
















          1












          $begingroup$

          Call $F$ the antiderivative of $f$ such that
          $F(1)=0$.



          Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.



          Now show that both expressions give the same result, i.e., :



          $${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$



          Method : Write your LHS integral under the form :



          $$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$



          Then integrate inside the large parentheses by parts in the first expression, giving



          $$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$



          Taking into account $F(1)=0$ and ${frak F}(1)=0$ :



          $$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$



          I let you find the rest...






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
            $endgroup$
            – Peter Sheldrick
            Dec 10 '18 at 10:10










          • $begingroup$
            You are right. Corrected.
            $endgroup$
            – Jean Marie
            Dec 10 '18 at 10:12














          1












          1








          1





          $begingroup$

          Call $F$ the antiderivative of $f$ such that
          $F(1)=0$.



          Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.



          Now show that both expressions give the same result, i.e., :



          $${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$



          Method : Write your LHS integral under the form :



          $$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$



          Then integrate inside the large parentheses by parts in the first expression, giving



          $$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$



          Taking into account $F(1)=0$ and ${frak F}(1)=0$ :



          $$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$



          I let you find the rest...






          share|cite|improve this answer











          $endgroup$



          Call $F$ the antiderivative of $f$ such that
          $F(1)=0$.



          Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.



          Now show that both expressions give the same result, i.e., :



          $${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$



          Method : Write your LHS integral under the form :



          $$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$



          Then integrate inside the large parentheses by parts in the first expression, giving



          $$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$



          Taking into account $F(1)=0$ and ${frak F}(1)=0$ :



          $$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$



          I let you find the rest...







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 10 '18 at 10:12

























          answered Dec 10 '18 at 8:25









          Jean MarieJean Marie

          29.9k42051




          29.9k42051












          • $begingroup$
            $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
            $endgroup$
            – Peter Sheldrick
            Dec 10 '18 at 10:10










          • $begingroup$
            You are right. Corrected.
            $endgroup$
            – Jean Marie
            Dec 10 '18 at 10:12


















          • $begingroup$
            $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
            $endgroup$
            – Peter Sheldrick
            Dec 10 '18 at 10:10










          • $begingroup$
            You are right. Corrected.
            $endgroup$
            – Jean Marie
            Dec 10 '18 at 10:12
















          $begingroup$
          $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
          $endgroup$
          – Peter Sheldrick
          Dec 10 '18 at 10:10




          $begingroup$
          $int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
          $endgroup$
          – Peter Sheldrick
          Dec 10 '18 at 10:10












          $begingroup$
          You are right. Corrected.
          $endgroup$
          – Jean Marie
          Dec 10 '18 at 10:12




          $begingroup$
          You are right. Corrected.
          $endgroup$
          – Jean Marie
          Dec 10 '18 at 10:12


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033608%2ftricky-integral-relationship%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bundesstraße 106

          Verónica Boquete

          Ida-Boy-Ed-Garten