Tricky integral relationship
$begingroup$
I am trying to prove that
$$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$
With the following sympy code i verified it symbolically for a few cases.
from sympy import *
x,u,v=symbols('x,u,v')
print
f=lambda x:exp(x);
print expand(integrate(integrate((u-0)*f(u),
(u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))
definite-integrals integral-transforms
$endgroup$
add a comment |
$begingroup$
I am trying to prove that
$$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$
With the following sympy code i verified it symbolically for a few cases.
from sympy import *
x,u,v=symbols('x,u,v')
print
f=lambda x:exp(x);
print expand(integrate(integrate((u-0)*f(u),
(u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))
definite-integrals integral-transforms
$endgroup$
add a comment |
$begingroup$
I am trying to prove that
$$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$
With the following sympy code i verified it symbolically for a few cases.
from sympy import *
x,u,v=symbols('x,u,v')
print
f=lambda x:exp(x);
print expand(integrate(integrate((u-0)*f(u),
(u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))
definite-integrals integral-transforms
$endgroup$
I am trying to prove that
$$begin{equation}int_x^{x+1}left(int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}uright)textrm{d}v=\int_0^xint_v^{v+1}f(u)textrm{d}utextrm{d}vend{equation}.$$
With the following sympy code i verified it symbolically for a few cases.
from sympy import *
x,u,v=symbols('x,u,v')
print
f=lambda x:exp(x);
print expand(integrate(integrate((u-0)*f(u),
(u,0,v))+integrate((u-1)*f(u),(u,v,1)),(v,x,x+1)))
print expand(integrate(integrate(f(u),(u,v,v+1)),(v,0,x)))
definite-integrals integral-transforms
definite-integrals integral-transforms
asked Dec 10 '18 at 8:00
Peter SheldrickPeter Sheldrick
6911339
6911339
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Call $F$ the antiderivative of $f$ such that
$F(1)=0$.
Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.
Now show that both expressions give the same result, i.e., :
$${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$
Method : Write your LHS integral under the form :
$$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$
Then integrate inside the large parentheses by parts in the first expression, giving
$$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$
Taking into account $F(1)=0$ and ${frak F}(1)=0$ :
$$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$
I let you find the rest...
$endgroup$
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033608%2ftricky-integral-relationship%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Call $F$ the antiderivative of $f$ such that
$F(1)=0$.
Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.
Now show that both expressions give the same result, i.e., :
$${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$
Method : Write your LHS integral under the form :
$$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$
Then integrate inside the large parentheses by parts in the first expression, giving
$$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$
Taking into account $F(1)=0$ and ${frak F}(1)=0$ :
$$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$
I let you find the rest...
$endgroup$
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
add a comment |
$begingroup$
Call $F$ the antiderivative of $f$ such that
$F(1)=0$.
Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.
Now show that both expressions give the same result, i.e., :
$${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$
Method : Write your LHS integral under the form :
$$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$
Then integrate inside the large parentheses by parts in the first expression, giving
$$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$
Taking into account $F(1)=0$ and ${frak F}(1)=0$ :
$$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$
I let you find the rest...
$endgroup$
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
add a comment |
$begingroup$
Call $F$ the antiderivative of $f$ such that
$F(1)=0$.
Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.
Now show that both expressions give the same result, i.e., :
$${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$
Method : Write your LHS integral under the form :
$$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$
Then integrate inside the large parentheses by parts in the first expression, giving
$$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$
Taking into account $F(1)=0$ and ${frak F}(1)=0$ :
$$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$
I let you find the rest...
$endgroup$
Call $F$ the antiderivative of $f$ such that
$F(1)=0$.
Call $frak{F}$ the antiderivative of $F$ such that $frak{F}$$(1)=0$.
Now show that both expressions give the same result, i.e., :
$${frak F}(x+1)-{frak F}(x)+{frak F}(0).$$
Method : Write your LHS integral under the form :
$$begin{equation}int_x^{x+1}left(int_0^1 uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}uright)textrm{d}vend{equation}.$$
Then integrate inside the large parentheses by parts in the first expression, giving
$$int_{x}^{x+1}([uF(u)]_0^1-int_0^1 F(u)du + F(v)-F(1)$$
Taking into account $F(1)=0$ and ${frak F}(1)=0$ :
$$=int_{x}^{x+1}({frak F}(0) + F(v))dv$$
I let you find the rest...
edited Dec 10 '18 at 10:12
answered Dec 10 '18 at 8:25
Jean MarieJean Marie
29.9k42051
29.9k42051
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
add a comment |
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
$int_0^{v} (u-0)f(u)textrm{d}u+int_v^{1} (u-1)f(u)textrm{d}u=int_0^{v} uf(u)textrm{d}u+int_v^{1} uf(u)textrm{d}u-int_v^{1}f(u)textrm{d}u$
$endgroup$
– Peter Sheldrick
Dec 10 '18 at 10:10
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
$begingroup$
You are right. Corrected.
$endgroup$
– Jean Marie
Dec 10 '18 at 10:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033608%2ftricky-integral-relationship%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown